Динисторы с низким напряжением

Динистор. Описание, принцип работы, свойства и характеристики.

Популярные динисторы однополярные и симметричные. Справочные данные.

Динистор! Редкий зверь в наших краях. У него уши вот такие, глаза — такие, и сам он такой. Сразу видно — пришло животное из далёких стран. Надо звать людей, пусть кто-нибудь расскажет, что это за скотина.

Секундочку, я уже здесь, только подгребу немного и переключусь на открытый канал. Итак, давайте определимся, что такое ДИНИСТОР. Когда молчит википедия — чёткой формулировки, переходящей от источника в источник, не существует, каждый трактует её по-своему, порой не совсем адекватно. Потренируемся и мы.

Динистор — это двухэлектродный ключевой полупроводниковый элемент, открытие которого происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, а закрытие — снижением до определённого уровня тока через него. К количеству наращённых в динисторе p-n переходов отнесёмся идентифирентно, а вот ВАХ (вольт-амперные характеристики), как нельзя лучше, помогут нам разобраться в работе данного типа полупроводников.

На Рис.1 (слева) приведена ВАХ однополярного (несимметричного) динистора, который работает только при наличии положительного смещения. При обратном смещении, превышающем Uобр max, прибор может выйти из строя.

Для снятия вольт-амперной характеристики динистора нам понадобится источник регулируемого напряжения от 0В до некоторого значения, превышающего напряжение открывания Uвкл полупроводника и эквивалент нагрузки Rн (Рис.2). Установим на источнике самый низкий уровень напряжения и начнём его постепенно повышать. Участок 1 на ВАХ: динистор закрыт, ток через нагрузку равен току утечки динистора (десятки микроампер), напряжение на Rн≈0. При дальнейшем увеличении напряжения ничего не меняется до тех пор, пока не будет достигнут уровень Uвкл. В этот момент динистор триггерно открывается (участок 2), и дальнейшая величина тока через нагрузку будет зависеть от входного напряжения, сопротивления Rн и сопротивления открытого динистора (участок 3). Напряжение на нагрузке Uн при этом равно напряжению источника питания минус напряжение (около 5В) падения на открытом динисторе. Ясен пень, что Iн=Uн/Rн=(Uпит-Uпад)/Rн . Как теперь закрыть динистор? Начинаем уменьшать напряжение источника. Ток нагрузки по прежнему равен Iн=(Uпит-Uпад)/Rн. В определённый момент времени, когда ток через динистор уменьшится до величины, называемой током удержания (Iуд), динистор мгновенно закроется, ток нагрузки упадёт до «0». Итог — ключ закрылся.

Симметричные (двухполярные) динисторы работают точно таким же образом, как и однополярные, только всё вышесказанное верно не только для положительных напряжений, но и для отрицательных. Проверяется незамысловатым изменением полярности подключённого источника питания.

Для наглядной иллюстрации изложенного материала, давайте рассмотрим работу динисторного генератора пилообразного напряжения.

Вот как описывает работу приведённого генератора автор издания «Практическая электроника от транзистора до кибернетической системы» Р.В.Майер.

«Нами использовались динистор типа КН102А (открывается при 11 В), резистор на 2 — 5 ком, конденсатор ёмкостью 1 — 10 мкФ; напряжение питания 20 — 100 В. При включении динистор закрыт, конденсатор C1 медленно заряжается от источника питания через резистор R1. Напряжение на конденсаторе растёт до напряжения открывания динистора (Рис.3.2). Когда динистор открывается, его сопротивление резко падает, и конденсатор быстро разряжается через него. При уменьшении анодного напряжения до напряжения закрывания динистор закрывается, после чего все повторяется снова. Время заряда τ=RC, поэтому при увеличении R и C период колебаний растёт, частота импульсов уменьшается. С ростом напряжения питания конденсатор заряжается быстрее, частота генерируемых импульсов увеличивается».

Подобьём сказанное перечислением основных параметров динистора:

— Напряжение открывания (включения), Uвкл; — Минимальный ток удержания, Iуд; — Максимально допустимый прямой ток, Iпр; — Ток утечки в закрытом состоянии, Iут; — Максимально допустимое обратное напряжение, Uобр max; — Падение напряжения на открытом динисторе, Uпр; — Скорость нарастания напряжения при переключении, dUзакр/dt, либо Время нарастания напряжения, tr.

Электрические характеристики распространённых однополярных динисторов КН102 и симметричных (двуполярных) DB3-D34 динисторов сведём в итоговую таблицу.

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Читать также: Классический танец на полу

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные

Но это не важно, главное убедиться в исправности тринистора

Сходство диммеров и блоков защиты ламп

Блоки защиты ламп, которые плавно включают яркость ламп, я подробно описал в своих статьях про устройство и подключение и схему таких блоков.

Отличие диммеров и БЗ – только в способе управления. В блоках защиты симистором управляет контроллер по программе. А программа может быть любой, вплоть до волнообразного изменения яркости. Может быть управление любым аналоговым или цифровым сигналом. Был бы спрос.

Если Вам интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Home Радиотехника Проверка тиристоров, симисторов, динисторов

Динисторы, тиристоры, симисторы представляют собой полупроводниковые приборы четырехслойной структуры р-п-р-п. Часто при пояснении принципа работы их изображают в виде соединенных между собой, как показано на рис. 1, транзисторов разной проводимости. Как видно из рисунка, тиристор имеет три вывода: анод (А), катод (К) и управляющий электрод (УЭ). Напряжение, приложенное к р-n переходу одного из транзисторов, обеспечивает отпирание тиристора.

Самая распространенная и характерная неисправность симисторов, тиристоров и динисторов это межэлектродный пробой — анод1-анод2, анод-катод, анод-управляющий электрод, катод управляющий электрод. По этой причине в первую очередь следует проверить омметром сопротивление между электродами. В исправных симисторах, тиристорах, динисторах участок А-К (A1-A2) не прозванивается. Тиристор и симистор, кроме того, можно проверить на исправность р-n перехода между УЭ и К, за исключением приборов со встроенным резистором.

Наилучшие результаты проверки тиристоров и симисторов обеспечивает испытательная схема, изображенная на рис. 2. Для питания схемы используется источник постоянного тока напряжением 12 В с допустимым током нагрузки не менее 200 мА. Резистор R1 ограничивает ток через испытуемый прибор, а резистор R2 — через его управляющий электрод. Схема обеспечивает тестирование тиристоров и симисторов малой и средней мощности. Для проверки прибора необходимо:

1. Включить его в схему, как показано на рис. 2.

2. Кратковременно соединить его УЭ с резистором R2. Прибор должен открыться, напряжение +Uтест станет близким к нулю. Прибор остается открытым и при отключенном от R2 управляющем электроде.

3. Разорвать цепь питания анода (УЭ при этом соединен с К) и замкнуть ее вновь. Прибор должен находиться в закрытом состоянии. +Uтест при этом равно 12 В.

При тестировании симисторов следует повторить п.п. 2, 3, и R2 при этом должен быть запитан от отрицательного полюса источника питания.

Результат такого тестирования позволяет убедиться в исправности прибора. Тем не менее 100% результатом тестирования следует считать исправную работу полупроводникового прибора в том устройстве, где он установлен.

Динисторы (или диаки и сидаки как их еще называют) не имеют вывода УЭ, и они открываются при превышении напряжения на аноде некоторого значения, указываемого в параметрах на данный тип прибора. Как было сказано выше, с помощью мультиметра динистор можно проверить только на пробой перехода. Для того чтобы точно знать исправен динистор или нет, его следует проверить, включив в испытательную схему (рис. 3), которая питается от регулируемого источника напряжения переменного тока.

Диод D1 представляет собой однополупериодный выпрямитель, конденсатор С1 — сглаживающий, резистор R1 ограничивает ток через динистор. При проверке следует плавно увеличивать напряжение на динисторе. При достижении некоторого порогового значения он откроется, при уменьшении напряжения по достижении протекающего тока значения заданного тока удержания — закроется. После такой проверки необходимо ее повторить, изменив полярность приложенного к динистору напряжения. При проверке в качестве источника напряжения переменного тока во избежание опасности поражения следует использовать трансформатор.

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельсия.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента,проверить его обычным мультиметром не получится. Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента. Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода. В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

При подобной проверке рекомендуется замерять напряжение, при котором загорается светодиод. То есть, напряжение пробоя, которое понадобится для дальнейшей работы с прибором.

Помимо данной схемы, существует способ проверки с помощью осциллографа.

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов:

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?». Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев. Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

Проверка

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Тиристор – переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент имеет четыре кремниевых слоя типа «n» и «p» и три вывода – анод (А), катод (К) и управляющий электрод (УЭ) (рис. 1а).

Как и полупроводниковый диод, тиристор проводит ток в одном направлении, но может находиться в двух состояниях: выключено и включено. Управление осуществляется по входу УЭ (см рис. 1б). После включения для возврата тиристора в исходное (выключенное) состояние необходимо, чтобы с управляющего электрода было снято напряжение или было закорочено с катодом, как на рисунке 1в. Закрытие тиристора так же можно произвести сменой полярности, т. е. переменным питающим напряжением.

Схема прибора для проверки исправности тиристора с таблицей состояния, исходя из принципов работы тиристора, представлена на рисунке 2.

Прибор проверки тиристора питается от сети переменного тока через понижающий трансформатор Т1. Нажатием на кнопку SB1 «Контроль», определяется исправность или неисправность тиристора, в соответствии с таблицей истинности на рисунке 3.

В приборе для проверки тиристора применены резисторы МЛТ, причем резистор R1 составлен из трех резисторов МЛТ-2 сопротивлением по 150 Ом, соединенных параллельно. Диоды кремневые маломощные на рабочее напряжение более 30 вольт. В качестве понижающего трансформатора подойдет любой, мощностью более 10 ватт и напряжением на вторичной обмотке 22…27 вольт.

Особенности процедуры

Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:

  1. К собранной самодельной конструкции подключается полупроводниковый элемент.
  2. Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
  3. Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
  4. К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
  5. Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
  6. Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
  7. При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.

Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные

Но это не важно, главное убедиться в исправности тринистора

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Способы проверки

Для диагностики неисправностей электронной схемы нужно последовательно проверять её элементы

В первую очередь уделяют внимание силовым цепям, а именно всем полупроводниковым ключам. Для их проверки можно воспользоваться одним из способов:

  • мультиметром (омметром или прозвонкой);
  • батарейкой со светодиодом или лампочкой;
  • на стенде.

Для диагностики следует выпаять элемент, потому что при проверке любых компонентов электронных схем на исправность, не выпаивая с платы, есть вероятность неправильных измерений. Например, вы обнаружите короткое замыкание не проверяемого элемента, а соединённых с ним в цепи параллельно.

В любом случае вы можете проверить симистор и тиристор на исправность не выпаивая, а если найдете возможную неисправность – выпаять и провести измерения повторно.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Тема ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: