Тиристор

Регулятор тиристора

Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим:

Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт.

Перейдем к составу, регулятор мощности в данном случае включает в себя:

  1. Диод полупроводника “vd1”;
  2. Резистор “r1” переменного назначения;
  3. Резистор “r2” постоянного назначения;
  4. Емкость малой проводимости “c1”;
  5. Переключающий прибор Тиристор “vs1”.

Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт.

Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода.

Способности тиристора

Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения).

К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода.

Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части.

Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента.

Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”).

Виды регуляторов мощности

Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому:

  • Диммер. Тот самый инструмент , про который шла речь в нашей структуре. Чаще всего его используют в качестве управляющего элемента мощностной нагрузки, при этом, в цепь подключается последовательно. Если мы говорим о статистике, то диммер применяется ради поправки световой яркости в различных типах ламп;
  • Автоматический регулятор мощности. Представляет из себя электронную структуру, которая позволяет изменить показания подводимой мощности (это происходит благодаря удержанию процесса включения прибора в работу на половинчатом периоде с переменным током);
  • Регулятор “Симосторной” мощности. Аналог автоматического регулятора, также используется в электроцепях с переменным током (применяется для мгновенных изменений различных параметров цепи);
  • Авто-электронный регулятор мощности. Это система, предназначенная для регулирования мощности хода и для управленческого процесса в оборотах электродвигателей;
  • “Дуговой” диммер мощности. Это элемент, имеющий ту конструкцию, которая способна обеспечить поддержку на постоянной основе определенному значению дугового горения.

Тиристорный регулятор мощности с плавным пуском на 1000 Вт

Предыстория создания девайса такова. Задумал я как то покрасить крыло своего автомобиля. Приехал в гараж, подготовился. Так как погода была прохладная, то для быстрой сушки крыла его нужно было нагреть. Из подручных средств, для бесконтактной сушки, я не нашёл ни чего лучше чем прожектор ПКН мощностью 1 кВт.

Однако его лампа выдерживала 10-15 включений. А такую лампу в моём городе найти не такая уж легкая задачка. По этой причине я вооружился давно знакомой мне микросхемкой К1182ПМ1, двумя завалявшимися тиристорами и сделал устройство для плавного включения ПКН. Сначала было собрано устройство без внешних органов управления.

Но позднее я подумал, что такую мощную штуковину можно использовать не только как плавный пуск, но и как регулятор мощности для устройств, потребляющих чисто активную нагрузку. Например, электронагреватель. И тогда было принято решение «прикрутить» к устройству ещё и переменный резистор для ручной регулировки мощности.

Получалось следующее.

Схема устройства проста.

На ней к сети ~220 В последовательно подключается предохранитель на 8 А, нагрузка в виде лампы, и 2 тиристора Т142-80-4-2 включенные встречно параллельно.

Для того чтобы через цепи управления каждого из тиристоров, в нерабочий полупериод, не протекал ток управления, используется развязка из диодов КД411ВМ.

Это гарантирует правильную работу тиристоров во время рабочего полупериода сетевого напряжения.

Резистор 600 Ом используется для ограничения тока управления. А при помощи регулировочного резистора 68 кОм меняется мощность, отдаваемая в нагрузку (в моём случае в качестве нагрузки выступает прожектор).

Принцип работы устройства можно понять из рисунка. Для регулировки мощности изменяется угол открытия тиристоров. Чем больше угол α, тем меньшая часть синусоиды пропускается в нагрузку. Когда α = 1800 оба тиристора полностью закрыты и мощность в нагрузку не передаётся.

Когда α = 00 в нагрузку поступает вся синусоида полностью и соответственно передаётся полная мощность. В первый момент после включения нагрузки угол α всегда равен 1800. Далее он начинает плавно уменьшаться до значения соответствующего текущему положению регулировочного резистора.

За счёт этого и достигается плавный пуск.

Замечу, что данное устройство можно использовать только с активной нагрузкой, так как в случае реактивной нагрузки используются несколько иные способы регулирования мощности.

Максимально допустимый средний ток в открытом состоянии для данных тиристоров составляет 80 А. Не трудно подсчитать, что максимальная мощность, которую можно через них пропустить, равна Р=220*80=17600 Вт.

Однако это теоретическое значение, которое я не проверял на практике и поэтому не возьмусь утверждать что система выдержит мощность в 17 кВт. На практике мной подключалась нагрузка в 1 кВт. При этом радиаторы совершенно не грелись.

Такие большие радиаторы я применил только по той причине, что тиристоры уже были прикручены к ним. Поэтому для данной конструкции подойдут и радиаторы, гораздо меньшего размера.

На этой фотографии к устройству ещё не подключена розетка и сетевой шнур.

P.S. Первоначально печатка разводилась под другие диоды. Но потом жизнь внесла свои коррективы. Поэтому, даже если вы будете ставить диоды КД411ВМ, то печатку лучше переделать под их реальные размеры. Хотя у меня и так влезло

Разработано и изготовлено Дмитрием Чупановым ([email protected])

Скачать список элементов (PDF)

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Советуем Вам также ознакомиться с параметрами стабилитрона д814а.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы

Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Схема подключения индуктивной нагрузки к оптосимистору

Сигнал, поступающий от оптосимистора на управляющий электрод симистора, нужен только для его открывания. Но при большой частоте переключения коммутируемого напряжения, возникает большая вероятность спонтанного включения управляемого симистора, даже если отсутствует сигнал управления.

Факторами ложных срабатываний могут быть выбросы напряжения при включении ключа, подключенного к индуктивной нагрузке, импульсные помехи в линиях питания нагрузки. Действенный способ устранения данных неприятных моментов – применение в схеме снабберной (демпфирующей) RC – цепочки, которая подключается параллельно выходу ключевого блока.

Конденсатор в снабберной RC-цепи — металлопленочный с номиналом от 0,01 до 0,1 мкФ, сопротивление резистора составляет 20…500 Ом. Данные параметры элементов необходимо рассматривать исключительно в качестве приблизительных величин.

https://electrik.info/main/praktika/1490-sposoby-i-shemy-upravleniya-tiristorom-ili-simistorom.html https://nauchebe.net/2014/05/upravlenie-simistorami-v-sxemax-na-mikrokontrollere/ https://www.joyta.ru/4692-optosimistory-parametry-i-sxemy-podklyucheniya/ https://go-radio.ru/simistor.html https://www.joyta.ru/4692-optosimistory-parametry-i-sxemy-podklyucheniya/

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью
микроконтроллера. Тогда схема управления будет выглядеть следующим
образом.

Пусть напряжение питания равно 5 В.

Характеристики (рабочий ток и падение напряжения) типичных светодиодов
диаметром 5 мм можно приблизительно оценить по таблице.

Цвет \(I_{LED}\) \(V_{LED}\)
Красный 20 мА 1,9 В
Зеленый 20 мА 2,3 В
Желтый 20 мА 2,1 В
Синий (яркий) 75 мА 3,6 В
Белый (яркий) 75 мА 3,6 В

Пусть используется белый светодиод. В качестве транзисторного ключа
используем КТ315Г — он подходит по максимальному току (100 мА) и
напряжению (35 В). Будем считать, что его коэффициент передачи тока
равен \(\beta = 50\) (наименьшее значение).

Итак, если падение напряжения на диоде равно \(V_{LED} = 3{,}6\,\textrm{В}\), а
напряжение насыщения транзистора \(V_{CE} = 0{,}4\,\textrm{В}\) то напряжение на
резисторе R2 будет равно \(V_{R2} = 5{,}0 — 3{,}6 — 0{,}4 = 1\,\textrm{В}\). Для
рабочего тока светодиода \(I_{LED} = 0{,}075\,\textrm{А}\) получаем

Значение сопротивление было округлено, чтобы попасть в ряд
E12.

Для тока \(I_{LED} = 0{,}075\,\textrm{А}\) управляющий ток должен быть в \(\beta =
50\) раз меньше:

Падение напряжения на переходе эмиттер — база примем равным \(V_{EB} =
0{,}7\,\textrm{В}\).

Отсюда

Сопротивление округлялось в меньшую сторону, чтобы обеспечить запас по
току.

Таким образом, мы нашли значения сопротивлений R1 и R2.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

2У202Д, 2У202Е, 2У202Ж, 2У202И, 2У202К, 2У202Л, 2У202М, 2У202Н, КУ202А, КУ202Б, КУ202В, КУ202Г, КУ202Д, КУ202Е, КУ202Ж, КУ202И, КУ202К, КУ202Л, КУ202М, КУ202Н

Тиристоры кремниевые, планарно-диффузионные, структуры p-n-p-n, триодные, незапираемые. Предназначены для применения в качестве переключающих элементов устройств коммутации напряжения малыми управляющими сигналами. Выпускаются в металлостеклянном корпусе с жесткими выводами. Тип прибора приводится на корпусе.

Масса тиристора не более 14 г, с комплектующими деталями не более 18 г.

Габаритный чертеж соответствует 2У201(А—Л), КУ201(А—Л).

Электрические параметры
Напряжение в открытом состоянии при Iос=10 А, не более:  
при Т=+25°С 1,5 В
при Т=—60°С 2 В
Отпирающее постоянное напряжение управления при Iу.от=200 мА, Uзс=10 В и Т=—60°С, не более 7 В
Неотпирающее постоянное напряжение управления при Uзс=Uзс.макс и Тк=Тк.макс, не менее 0,2 В
Постоянный ток в закрытом состоянии при Uзс=Uзс.макс, Т=+25°С и Тк=Тк.макс, не более 4 мА
Обратный ток при Uобр=Uобр.макс, Т=+25°С и Тк=Тк.макс, не более 4 мА
Ток удержания при Uзс=10 В, не более 300 мА
Отпирающий постоянный ток управления при Uзс=10 В, Iос=10 А и Т=—60°С, не более 200 мА
Неотпирающий постоянный ток управления при Uзс=Uзс.макс и Тк=Тк.макс, не менее 2,5 мА
Время включения при Uзс=50 В, tи=50 мкс, Iу.от.и=200 мА, tу=10 мкс, fу=50 Гц, tу.ф=1 мкс и Iос=10 А, не более 10 мкс
Время выключения при Uзс=Uзс.макс, Iос=10 А, tи=50 мкс, fу=50 Гц, dUзс/dt=5 В/мкс и tу.ф=5 мкс, не более 150 мкс
Общая емкость не более 800 пф
Предельные эксплуатационные данные
Постоянное напряжение в закрытом состоянии:  
КУ202А, КУ202Б 25 В
КУ202В, КУ202Г 50 В
2У202Д, 2У202Е, КУ202Д, КУ202Е 100 В
2У202Ж, 2У202И, КУ202Ж, КУ202И 200 В
2У202К, 2У202Л, КУ202К, КУ202Л 300 В
2У202М, 2У202Н, КУ202М, КУ202Н 400 В
Постоянное обратное напряжение:  
2У202Е, КУ202Е 100 В
2У202И, КУ202И 200 В
2У202Л, КУ202Л 300 В
2У202Н, КУ202Н 400 В
Обратное постоянное напряжение управления 10 В
Прямое постоянное напряжение управления 10 В
Скорость нарастания напряжения в закрытом состоянии 5 В/мкс
Постоянный ток в открытом состоянии при Тк≤+70°С 10 А
Импульсный ток в открытом состоянии при tи≤10 мс, Iос.ср≤5 А и Тк≤+70°С 30 А
Импульсный ток в открытом состоянии при единичных импульсах, tи≤50 мкс, f=50 Гц и Тк≤+70°С 50 А
Прямой импульсный ток управления:  
при Тк=+70°С 300 мА
при tи≤50 мкс и Тк≤+70°С 500 мА
Обратный постоянный ток управления 5 мА
Средняя рассеиваемая мощность:  
при Тк≤+70°С 20 Вт
при Тк=Тк.макс 1,5 Вт
Импульсная рассеиваемая мощность управления при tи≤10 мкс, Uу.от.и≤20 В и Тк≤+70°С 20 Вт
Импульсная рассеиваемая мощность управления при tи≤50 мкс, и Тк≤+70°С 2,5 Вт
Температура корпуса:  
2У202Д—2У202Н +110°С
КУ202А—КУ202Н +85°С
Температура окружающей среды:  
2У202Д—2У202Н —60…+100°С
КУ202А—КУ202Н —60…+75°С

Зависимости допустимого среднего тока в открытом состоянии от температуры корпуса

Зависимость отпирающего постоянного тока управления от температуры корпуса

Зависимость неотпирающего постоянного тока управления от температуры корпуса

Зависимость отпирающего постоянного напряжения управления от температуры корпуса

Зависимость неотпирающего постоянного напряжения управления от температуры корпуса

Зависимость отпирающего импульсного тока и напряжения управления от длительности импульса

При монтаже запрещается прилагать к изолированным выводам усилие, превышающее 0,98 Н (0,1 кгс). При креплении тиристоров к теплоотводу усилие затяжки не должно превышать 2,45 Н*м.

Пайка вывода катода допускается не ближе 7 мм от стеклянного изолятора, управляющего электрода — не ближе 3,5 мм, в течение не более 3 с с температурой паяльника не свыше +260°С.

При эксплуатации тиристора между катодом и управляющим электродом должен быть включен шунтирующий резистор сопротивлением 51 Ом.

При отрицательном напряжении на аноде тиристора подача тока управления не допускается.

Зависимости допустимого напряжения в закрытом достоянии от температуры корпуса

Зависимость времени включения от температуры корпуса

Зависимость скорости нарастания напряжения в закрытом состоянии от температуры корпуса

Зависимость скорости нарастания напряжения в закрытом состоянии от температуры корпуса

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться: На управляющий выход и катод. Название — с управлением катодом.
  • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Тема ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: