Расчеты
Чтобы понять, как намотать импульсный трансформатор, необходимо произвести расчеты. Если же осуществляется перемотка уже существующей катушки, можно просто запомнить изначальное количество ее витков и приобрести провод идентичного сечения. В этом случае без расчетов можно обойтись.
Но если требуется создать новый трансформатор, нужно определить количество и тип материалов. Например, для устройства с рабочей нагрузкой от 12 до 220 В потребуется аппарат от 90 до 150 Вт мощностью. Взять магнитопривод можно, например, из старого телевизора. Сечение проводника определяется в соответствии с мощностью агрегата.
Количество витков катушек определяется для 1В. Этот показатель приравнивается к 50 Гц. Первичная (П) и вторичная (В) обмотки рассчитываются так:
- П = 12 х 50/10 = 60 витков.
- В = 220 х 50/10 = 1100 витков.
Чтобы определить в них токи, применяется следующая формула:
- Тп = 150 : 12 = 12,5 А.
- Тв = 150 : 220 = 0,7 А.
Полученный результат необходимо учесть при выборе материалов для создания нового прибора.
Принцип действия
Принцип действия понижающего трансформатора основан на использовании явления взаимной индукции, которая действует через магнитное поле, и обеспечивает передачу электроэнергии из одного контура устройства в другой. Действие трансформатора происходит так:
- Ток проходит по первичной катушке, которая создаёт магнитное поле.
- Все силовые линии замыкаются возле проводников катушки.
- Некоторые из этих силовых линий замыкаются возле проводников другой катушки. Получается, что обе связаны между собой при помощи магнитных линий.
- Чем дальше расположены обмотки друг от друга, тем с меньшей силой возникает между ними магнитная связь, так как меньшее количество силовых линий первой цепляется за силовые линии второй.
- Через первую проходит переменный ток (который меняется во времени и по определённому закону), значит, магнитное поле, которое создаётся, тоже будет переменным, то есть меняться во времени и по закону.
Из-за изменения тока в первой в обе катушки поступает магнитный поток, который меняет величину и направление. Происходит индукция переменной электродвижущей силы. Об этом говорится в законе электромагнитной индукции.
Если концы второй соединить с приёмниками электроэнергии, то в цепочке приёмников появится ток. К первой от генератора будет поступать энергия, которая равная энергии, отдаваемой в цепочку второй. Энергия передаётся посредством переменного магнитного потока.
Схема простейшего тороидального понижающего трансформатора.
Понижающий трансформатор (220B 110В) обеспечивает нормальную работу оборудования и электроприборов, которые изготовлены в странах, где нормы сетей электропитания отличаются от российского стандарта.
Понижающие трансформаторы напряжения имеют широкую область применения, однако чаще всего они используются в источниках питания различных приборов и в электросетях. Выбор конкретного устройства необходимо осуществлять с учетом определенных запросов для каждого отдельного случая.
Любой из рассмотренных типов трансформаторов можно использовать по противоположному назначению (подключить вторичную обмотку к источнику переменного напряжения, а первичную обмотку – к нагрузке).
В этом случае трансформатор будет выполнять противоположную функцию: понижающий трансформатор будет функционировать как повышающий, и наоборот. Однако, для эффективной работы трансформатора индуктивности каждой из его обмоток должны быть спроектированы под конкретные рабочие диапазоны напряжения и тока.
Поэтому, при использовании трансформатора по “противоположному” назначению, напряжения и токи его обмоток должны оставаться в исходных конструктивных параметрах. Только в этом случае трансформатор будет эффективен (и не будет поврежден чрезмерным напряжением или током!).
Трансформаторы часто имеют такую конструкцию, что не очевидно, какие провода принадлежат к первичной обмотке, а какие к вторичной. Во избежание путаницы, на многих трансформаторах (в основном импортного производства) используется обозначение “Н” для высоковольтной обмотки (первичная обмотка в понижающем трансформаторе, вторичная обмотка в повышающем трансформаторе), и обозначение “X” для низковольтной обмотки. Поэтому простой силовой трансформатор будет иметь провода с надписью «H1», «H2», «X1» и «X2».
Понижающие модификации
Понижающий трансформатор с 220 на 24 вольта часто встречается с мощностью от 100 Вт. Используются устройства данного типа, как правило, для электроприводов. Магнитопроводы с реле у многих моделей имеются с ленточными сердечниками
Также важно отметить, что обмотки в устройствах на 3 кВт устанавливаются концентрические. Однако на рынке представлены модификации с трехслойными аналогами
Всего выводов у понижающих устройств имеется два.
Некоторые модификации выпускаются с клеммами. Весит понижающий трансформатор 220 на 24 вольта не более 5 кг. По параметру проводимости тока модели довольно сильно различаются. В данном случае необходимо учитывать тип трансивера. Отечественные трансформаторы в основном продаются с ортогональными аналогами. Однако зарубежные компании отдают предпочтение подстроченным трансиверам. Показатель перегрузки тока у моделей в среднем составляет 5,5 А. Некоторые устройства выпускаются с переключателями для регулировки фазы.
Конструкция
Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.
Фото — схема
Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:
- Спиральными (на ферритовом кольце);
- Винтовыми;
- Винтоспиральными или комбинированными.
Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.
Фото — конструкция самодельного элемента
Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:
- С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
- Стальные используются в условиях низкого напряжения.
Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.
Исходя из принципа работы, бывают такие типы:
- Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
- Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
- Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
- Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.
Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.
Фото — маркировка
Почему нужно использовать текстолит
По стандарту обмотки силового трансформатора выполняются на специальных каркасах. Для изготовления каркасов на заводах, то есть на серийном производстве, применяют прессованные варианты из пресс порошков. Состав этих пресс порошков определяет основные химически и физические свойства, которыми будет обладать деталь в дальнейшем. Но если производство мелкосерийное или же трансформатор, в частности его каркас, изготовляется в домашних условиях, то используют слоистые пластинки, а также гетинакс, картон.
Ранее наиболее часто применяющимся вариантом служил гетинакс, который обладал средними характеристиками, но минимальной стоимостью. Потом стали использовать картон. Несмотря на его отличительные свойства и простоту использовании он не сумел прижиться, так как требовалась обязательная пропитка гигроскопичному материалу.
Особенности
Текстолит является оптимальным в плане соотношения качества, удобства и цены. Он отлично поддается любой обработке, например, механической или термической. Обрезка листов до 1,5 миллиметров проводится и в холодном состоянии, что удобно, если речь идет не о крупном серийном производстве. Используются для минимальных по толщине пластов гильотинные ножницы. А если листы немного толще, то используется циркулярная пила.
Текстолит, толщина пласта которого превышает 3 миллиметра, распиливается уже в горячем состоянии. Но можно не нагревать до температуры плавления, оптимальным будет нагрев от 80 градусов (в крайнем случае 120 градусов).
Удобный этот материал и для тех, кто занимается изготовлением каркасов в домашних условиях. Можно брать только часть, а после этого провести опиловку над профилем. Швы покрываются специальным слоем, а каркас лаком для обеспечения защиты от влажности, повышения жесткости и улучшения защиты обмоток. Также тонкий слой лака служит для обеспечения гигроскопичности, обязательно требуется выбирать качественный состав.
Дополнительные требования
Для гильзы каркаса используются гетинакс идентичной толщины. В некоторых ситуациях есть смысл брать большую по толщине катушку, чтоб получить ровную форму обмоток. Ребра гильзы делаются слегка круглой формы. Это поможет избежать излома или уменьшить его угол, что непременно проявляется при намотке на первых слоях инструмента. Но следует избегать и проявления излишней округленности. Это понизит прочность поверхности.
Размеры материала берутся в строгом соответствии с тем, каких размеров сам трансформатор и дроссель. Для минимальных по размерам устройств чаще прибегают к установке каркасов из материала толщиной от 0,2 до 0,5 миллиметров. Для больших катушек берутся варианты с толщиной от 2 миллиметров.
Отдельно стоит отметить важность использования качественного клея. Текстолитовые каркасы обязательно просто автоматически складываются и закрепляются друг с другом, но бывают ситуации, когда они соединяются между собой при помощи клея
Столярный клей или универсальный, который можно купить в любом строительном магазине, подходит только для проклейки каркаса трансформатора из картона, но для текстолита использовать его не разрешается.
Устройство и принцип работы
Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.
Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.
Что касается количества витков, то получается так:
- если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
- и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.
Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:
k=w1/w2, где w – это число витков в катушке с соответствующим номером.
И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.
- Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
- Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).
Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).
Самостоятельное изготовление
Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.
Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.
Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:
- Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
- Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
- Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
- Таким же способом наматывается вторичная обмотка.
- После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.
Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.
Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.
https://youtube.com/watch?v=NeGpkK9zJyA
Какие трансформаторы лучше использовать для светодиодов
Для питания светодиодов нужны трансформаторы, преобразующие переменное напряжение 220 В (стандартное сетевое значение) в постоянный ток (в нашем случае —12 В). При этом, надо, чтобы никаких пульсаций напряжения после диодного моста не возникало, для чего используются сглаживающие конденсаторы. Это ограничивает возможности обычных блоков питания, которые не могут обеспечить достаточного качества и мощности выдаваемого напряжения.
Рассчитывать на то, что можно подключить лампу к стандартному выпрямителю, не следует — можно испортить светильник или получить неравномерное свечение, с пульсациями или мигающим режимом. Стандартный электронный драйвер, установленный в LED лампу на 220 В, тоже не подойдет — его мощность рассчитана только на единственный прибор и не позволит присоединить дополнительную нагрузку.
Необходимо учитывать недостатки:
- большие габариты;
- во время работы он издает гул, который со временем усиливается;
- потребление энергии довольно высокое, поскольку КПД устройства составляет 50-70%, все остальное — потери на нагрев и гул;
- сложность скрытого монтажа — объемный блок непросто куда-то спрятать.
Эти минусы ограничивают применение трансформаторов в пользу импульсных источников. Однако, среди любителей и домашних мастеров они получили широкое распространение из-за надежности, дешевизны и простоты применения.
Понижающие ток трансформаторы для светодиодных ламп и лент с 220 вольт до 12
Для подключения светодиодных лент или ламп используются специальное устройство (драйвер электронный), преобразующее 220 В в постоянное напряжение 12 В с заданной мощностью. Приобрести такой драйвер отдельно возможно не всегда, и обходится он не дешево. Это стало причиной изготовления альтернативных источников питания на базе трансформатора.
Здесь необходимо сразу учесть, что одним только подключением устройства вопрос решить не удастся. Дело в том, что на выходе трансформатора будут необходимые 12 В, но переменного тока. Поэтому после трансформатора понадобится установить диодный мост, который выдает пульсирующее напряжение. Это уже не переменка, но и от постоянной осциллограммы еще очень далеко.
Для того, чтобы получить качественную прямую на осциллограмме, надо параллельно выходу диодного моста поставить конденсатор такого номинала, чтобы полностью исключить пульсации тока. Чем больше его емкость, тем ровнее будет график, но слишком большие значения емкости также вредны. Возникает большой пусковой ток, который может быть опасным для осветительных приборов. Поэтому надо подбирать номинал так, чтобы график получался максимально ровным, но не более того.
Основным преимуществом трансформаторного источника является полная гальваническая развязка с сетью питания 220 В
Это важно именно для домашних мастеров и любителей украшать свои комнаты светодиодными лампами. Если при выполнении каких-либо работ человек прикоснется рукой к оголенным контактам, ничего страшного не произойдет
Что делает трансформатор
Принцип работы основан на электромагнитной индукции. Переменный ток создает вокруг проводника переменное магнитное поле, а оно, изменяясь, создает электродвижущую силу.
Когда мы подаем напряжение на первичную обмотку, ток в этой обмотке создает переменный магнитный поток. Он действует как на первую обмотку, так и на вторую, создавая в ней ЭДС. При включении в сеть потребителя в обмотке появляется электрический ток.
Схема эта работает только на переменном токе. При постоянном токе магнитный поток не меняется, и если вторичную обмотку в поле такого тока не вращать руками (что в нашем случае и не получится), то никакой ЭДС оно создавать не будет.
Упрощенное математическое выражение работы
Когда-то М. Фарадей проводил эксперимент, который показал, что напряжение в петле, представляющей собой проводник, зависит от изменения магнитного потока через эту петлю за единицу времени:
U=-ΔΦ/Δt
Когда у нас таких петель много, к примеру, N, то и равенство будет выглядеть немного по-другому:
U=-N*ΔΦ/Δt
Соответственно, на первой и на второй обмотках напряжения будут:
U1=-(N1)*ΔΦ/Δt
U2=-(N2)*ΔΦ/Δt
Поскольку магнитный поток и время для наших обмоток — одна и та же величина, то можно найти соотношение между напряжениями в обмотках:
U1/U2=N1/N2=n
И это n называется коэффициентом трансформации напряжения.
Если принять в качестве допущения, что всю свою мощность первая обмотка трансформирует в магнитный поток, а тот, в свою очередь, создает такую же мощность во второй, то получим следующее:
P1=(U1)*I1
P2=(U2)*I2
А если у нас P1=P2, то U1/U2=I2/I1
Представленные выше закономерности работают как идеальные. В реальности же работа трансформатора осложнена рядом побочных явлений, которые влияют и на работу самого устройства, и на работу сети в целом. Перечислим эти явления:
- Ток холостого хода. Наблюдается при включении трансформатора в виде резкого скачка и может привести к выходу из строя коммутационного оборудования, поэтому его учитывают при проектировании.
- Паразитные емкости и индуктивности. Образуются они в результате соседства проводников под напряжением в обмотке. В принципе, ими можно пренебречь, пока речь не идет о высоких частотах или перегрузках в цепи. Они ярко себя показывают во время грозы, приводя к неравномерным колебаниям напряжения с разным итогом — от падения напряжения до пробоя и выхода из строя. В высокочастотных трансформаторах паразитная индуктивность вносит уже существенные изменения в работу устройства, в котором такие трансформаторы стоят. Борются с этим явлением заземлением экрана между обмотками, применением хороших изоляторов для обмотки проводника.
- Побочные эффекты работы магнитного поля в ферромагнетиках сердечника. В железе, кобальте и никеле существует такое явление, как остаточная намагниченность, которое вносит свои коррективы в изменение напряжения в обмотках, вплоть до того, что оно все меньше напоминает по графику синусоиду. Помимо этого, магнитное поле индуцирует в сердечнике паразитные токи Фуко, что ведет к перегреву трансформатора. Проблемы эти отчасти решаются слоистой структурой сердечника, но не до конца.
https://youtube.com/watch?v=1-9bqwrl1BE
Это интересно: Производство полимерно-песчаной плитки — оборудование и изготовление
Расчёт параметров изделия
Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.
Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.
Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:
- S- площадь сечения;
- h- высота конструкции;
- D- наружный диаметр;
- d — внутренний диаметр.
Для вычисления площади окна используется формула: Sок=3,14*d2/4.
Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.
Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.
Сварочное устройство
Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:
1. Рассчитывается мощность трансформатора: Р = 200 А * 50 В = 1000 Вт.
2. Вычисляется сечение окна: Sок = π * d2/ 4 = 3,14 * 144 / 4 (см2) ≈ 113 см².
3. Площадь поперечного сечения: Sс=h * Н = 2 см * 30 см = 60 см².
4. Мощность сердечника: Рс = 2,76 * 113 * 60 (Вт) ≈ 18712,8 Вт.
5. Количество витков первичной обмотки: W1 = 40 * 220 / 60 = 147 витков.
6. Количество витков для вторичной обмотки: W2 = 42 * 60 / 60 = 42 витка.
7. Площадь провода вторички находится исходя из наибольшего рабочего тока: Sпр = 200 А /(8 А/мм2) ≈ 25 мм².
8. Вычисляется площадь провода первички: S1 = 43 А /(8 А/мм2) ≈ 5,4 мм².
Такой вариант расчёта применим не только для сварочников, но и с успехом может быть использован для других типов. Как видно, никаких трудностей при расчёте возникнуть не должно.
https://youtube.com/watch?v=gsZrCRxiUJs
Токовый трансформаторный прибор
Трансформатор тока своими руками сделать несложно, но перед его изготовлением понадобится выполнить расчёт. Такой расчёт отличаетчя от общепринятого в связи с конструктивными особенностями изделия. Начинается он с необходимой величины тока вторички (единица измерения ампер): Iам = Iпер / Iвт, где:
• Iпер — величина тока первичной обмотки, умноженная на число витков в ней;
• Iвт — количество витков во вторичной обмотке.
Для того чтобы разобраться, как правильно выполнить расчёт, проще рассмотреть практический пример самодельного токового устройства. Пусть на выходе токового устройства необходимо получить 4 вольта, а ток ограничить уровнем 5 ампер.
Поэтапно методика вычисления выглядит так:
- Берётся ферритовое кольцо, для примера 20×12х6 из 2000hМ.
- Мотается 100 витков провода. Эти витки составляют вторичную обмотку, так как первичная — это просто один виток проволоки, пропущенный через феррит.
- Значение тока во вторичке будет равно: I/Kтр = 5 / 100 = 0,05 A. где Ктр — коэффициент трансформации трансформатора (отношение количества первичной обмотки к вторичной).
- Величина нагрузочного шунта рассчитывается согласно закону Ома: R = U/I. Получается R= 4/0,05 = 80 Ом.
Таким образом можно выполнить расчёт для любых требуемых параметров. Независимо от формы тока на входе, на выходе токового устройства напряжение всегда двухполярное. В качестве шунта вторичной обмотки используется именно сопротивление, а не диод. Если есть необходимость в диоде, то вначале подключается резистор, а затем диод или диодный мост. Во втором случае сопротивление включается в диагональ моста.
https://youtube.com/watch?v=CKgUuyxEJHY
Что понадобится для сборки?
Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.
В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:
Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.
Для изготовления трансформатора своими руками вам понадобятся:
Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.
Изготовление каркаса катушки трансформатора своими руками
Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.
На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.
Испытание
Как только работа с намоткой подойдёт к концу, следует испытать созданный прибор. В этих целях к сети подключается обмотка первичная
Для грамотной проверки трансформатора на выявление возможных замыканий важно подключить к току лампу, а также обмотку последовательно.
Уровень изоляционной надёжности проверяется через касания поочерёдно выведенным проводным концом имеющегося конца обмотки сети. Если следовать предложенной схеме неуклонно, то трансформаторная намотка собственноручно не представит особых трудностей, а соответственно справиться с подобной задачей будет под силу даже неопытному мастеру.
Намотка трансформатора своими руками
Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.
На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.
Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.
Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.
Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.
Достоинства и недостатки сердечников
- Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
- Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
- Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.
В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.